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SUMMARY

Flows around the NAL jet-powered experimental airplane with a small rocket booster under the fuselage
are computed by solving the Euler equations using the overset unstructured grid method. The main
objective of the present study is to evaluate the e�ect of a small rocket booster, which accelerates the
airplane to supersonic speed, on the aerodynamic performance of the airplane during the ascent �ight
and the booster separation. Two unstructured meshes, one for the airplane and one for the booster,
overlap. For the accurate separation simulation, the two bodies are in contact at �rst, and then the
booster mesh is contact mesh is moved relative to the airplane mesh to evaluate �ow interactions
between two bodies. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The National Aerospace Laboratory (NAL) of Japan is currently developing a small jet-
powered experimental airplane as a part of the Next Generation Supersonic Transport project
[1, 2]. One of the objectives of the project is to test the natural laminar wing designed by the
CFD-based inverse design method. Following the unpowered airplane named NEXST1, the
second model named NEXST2 has two jet engines under the wings for a cruising �ight of
Mach 1.6–2.
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NEXST2 has a small rocket booster between the jet-engine nacelles in order to accel-
erate the airplane from transonic to supersonic speeds. The booster will be separated from
the airplane at a Mach number of 1.8. The rocket booster is relatively small compared to
the engine nacelles. However, when it is installed between the nacelles, the gap between the
rocket and the nacelles is very small. Therefore, it is very important to evaluate the e�ect of
the rocket booster on the overall aerodynamic characteristics of the airplane during the �ight
from transonic to supersonic, and when the booster is released from the airplane at supersonic
speed. Shock waves are generated not only from the nose of the airplane but also from the
nose of the booster and around the intakes of the nacelles. These shock waves interact with
each other and produce a complex �ow�eld.
The objective of this study is to compute the �ow�eld of the NEXST2 during the ascent

�ight with the rocket booster and during the separation of the booster at supersonic speed.
To simulate the booster separation from the airplane by CFD, there are several approaches.

The overset structured grid (Chimera) method is the most common approach for such a
problem. This method was �rst introduced by Steger et al. [3] and Benek et al. [4] in 1980s.
Currently this method is e�ectively used to solve both steady and unsteady Navier–Stokes
computations for complex geometry [5–7] and for moving-body problems [8, 9]. Another
approach is the deforming mesh method and has shown good results since 1980s [10, 11].
Recently the deforming mesh method becomes a powerful tool for treating moving-body
problems [12–14].
In this paper, the overset unstructured grid method is used to compute �ows around the

NEXST2 airplane with the booster. The overset unstructured grid method has been proposed
by the present authors and successfully applied to several problems [15–18]. The approach
was also employed in References [19, 20]. Unstructured grids have great �exibility in handling
complex geometries. By using unstructured grids for the overset concept, the number of sub-
meshes required for covering the �ow�eld can be signi�cantly reduced as compared with that
needed in the overset structured grids. As a result, constructing interpolation stencils between
grids becomes simple. Another advantage of this method is the capability for treatment of
multiple bodies in contact [18]. Due to this capability, more precise simulation of separation
becomes possible.

Figure 1. NAL jet-powered experimental airplane with a small rocket booster.
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The NAL jet-powered experimental airplane has a relatively complicated con�guration as
shown in Figure 1. As mentioned above, the overset unstructured grid method is well suited
to deal with multiple bodies in relative motion, especially when they have complicated con-
�gurations. It is also useful to evaluate the e�ect of the booster on the overall aerodynamic
performance of the airplane in ascent �ight. With the overset approach, adding=deleting the
booster or changing the relative position of the booster to the airplane can be easily conducted
without generating new meshes.
In this paper, computational methods to treat complex geometry of the airplane with a

small booster and to handle the moving body for the separation process are discussed and
then e�ects of the small booster on the �ow�eld of the airplane during the ascent �ight and
the separation process are discussed in detail.

2. OVERSET PROCEDURE

There are two major steps to establish intergrid communications in the overset method:

1. Hole cutting, which involves dividing all points of each subgrid into two groups, active
and non-active points.

2. Identi�cation of interpolation stencils, which involves a search of donor cells for all
intergrid-boundary points.

The second step, identi�cation of interpolation stencils, is straightforward for unstructured
grids. Once a donor cell is identi�ed, values on the point in this cell are interpolated from
values on the vertex of the cell using the area co-ordinates for a triangle and the volume
co-ordinates for a tetrahedral cell. In the present approach, the donor cell for the interpolation
at each intergrid-boundary point is identi�ed during the process of hole cutting. Therefore,
the �rst step is discussed here.
The identi�cation of the intergrid boundary for multiple body problems must be performed

completely automatically to fully take advantage of the overset unstructured grid approach. The
e�ciency and robustness of the hole-cutting procedure is particularly important for moving-
body problems. Here the wall distance is used as a basic parameter to construct the intergrid
boundary. Nodal points which are closer to the wall boundary of their own grid are de�ned
as a computational �eld [15, 16].
Let us consider an example of the hole-cutting procedure. In Figure 2, suppose that the

broken lines show the grid (Grid-A) generated around Body-A, and the solid lines show
that (Grid-B) for Body-B. Node i belongs to Grid-A, and then, the donor cell in Grid-B
is indicated by a-b-c in Figure 2. The minimum wall distance of this node i to Body-A is
compared with the wall distance of the donor cell to Body-B. The distance of the donor cell
is evaluated by a linear interpolation from its vertex values. Since the wall distance of the
node i to Body-A is shorter than that of donor cell a-b-c to Body-B, Node i is assigned as
an active node (belongs to computational �eld). In contrast, node j in Figure 2 is selected
as a non-active node. In this way, all nodal points in the overlapping region are assigned as
active (computational) or non-active (non-computational) nodes.
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Figure 2. Determination of intergrid boundary between grid A(· · ·) and grid B(−).

3. DONOR CELL SEARCHING

To construct the intergrid boundary, all nodal points must �nd their donor cells among the
overset grids. The required number of searching process can easily become more than one
million for three-dimensional problems. Therefore, an e�cient and reliable search algorithm
is necessary.
In this study, Lawson’s neighbour-to-neighbour jump search algorithm [21] is utilized. The

method is based on jump to the neighbouring cell that locates to the target side of the current
cell as schematically shown in Figure 3(1). For example, the current cell is the triangle a-b-c
in Figure 3(1). For each edge of the triangle a-b-c, on which side the target is located is
examined. Concerning the edge b-c of the triangle a-b-c, the nodal points a, d, f and h are
located inner side and the nodal points e, g and i are located outer side. In Figure 3(1),
the target is located on the inner side of the current cell relative to the edges a-b and a-c,
however, the target is located on the outer side of the current cell relative to the edge b-c. So,
the next cell is the triangle b-e-c. In the triangle b-e-c, the target is located on the outer side
relative to the edge c-e only and it is located on the inner side of the cell relative to the edges
b-c and b-e. The following cell becomes the triangle c-e-g. By repeating this procedure, the
succeeding cells become the triangles c-e-g, c-g-h, and h-g-i, which is the cell including the
target point. To judge if the target point is located inside the current cell or not, the volume
of the tetrahedron composed of the target point and the three vertexes of the current cell is
calculated as shown in Figure 3(2). If all the volumes (four tetrahedrons are composed of the
target and each face of the current cell are calculated) are positive, the target point is located
inside the current cell. Flow variables are also averaged by these volumes. The variables are
averaged by using the ratio of each volume that is composed of the recipient point and each
face of the current cell to the total volume of the current cell.
This searching process is very e�cient because the search path becomes one-dimensional

even in the three-dimensional �eld. However, the result highly depends on the starting point.
As shown in Figure 4(a), the search starting from point A succeeds in reaching the target.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:801–818
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Figure 3. (1) Selection of the next cell among three neighbours; and (2) donor cell searching.

Figure 4. Neighbour-to-neighbour search: (a) searches from B and C
fail; and (b) searches in a convex domain.

However, searching from B and C get stuck at the body boundary or the outer boundary. For
these cases, the search has to be restarted by changing the starting cells.
To avoid this uncertainty of the searching process, the search domain is modi�ed to become

a convex hexahedron in three dimensions for any computational geometry. This is done by
adding subsidiary meshes into the bodies and outside of the computational region as shown
in Figure 4(b). Because the Delaunay triangulation [22] is employed for the mesh generation,
the subsidiary meshes can be obtained automatically as a byproduct of the mesh generation
procedure. By utilizing the subsidiary meshes, the Lawson’s method becomes more reliable
and e�cient.
For multiple moving-body problems, the intergrid-boundary de�nition must be as e�cient

as possible. Since the e�ciency of the donor cell search depends on the initial guess, the
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computational work for the second search after the initial hole cutting is reduced signi�cantly.
Moreover, once the initial hole cutting is performed, the search of the donor cells after a small
relative movement of the subgrid can be limited to cells around the previous donor cell.

4. FLOW SOLVER

In the present method, the computational domain consists of several unstructured subgrids,
which may overlay each other. The unstructured subgrids generated around each component
in the �ow�eld are put together to discretize the whole computational domain. The Euler
equations are solved in each subgrid with the proper boundary conditions.
The Euler equations for compressible inviscid �ows are written in an integral form as

follows:

@
@t

∫
�
Q dV +

∫
@�
F(Q) · n dS=0 (1)

where Q=[�; �u; �C; �w; e]T is the vector of conservative variables; � the density; u, v and
w the velocity components in the x, y and z directions; and e is the total energy. The vector
F(Q) represents the inviscid �ux vector and n is the outward normal of @�, which is the
boundary of the control volume �. This system of equations is closed by the perfect gas
equation of state.
The equations are solved by a �nite volume cell-vertex scheme. The control volume is a

non-overlapping dual cell. For the control volume, Equation (1) can be written in an algebraic
form as follows:

@Qi

@t
= − 1

Vi

∑
j(i)
�Sijh(Q+

ij ;Q
−
ij ; nij) (2)

where �Sij is the segment area of the control volume boundary associated with the edge
connecting points i and j. This segment area, �Sij , as well as its unit normal, nij , can be
computed by summing up the contribution from each tetrahedron sharing the edge. The term
h is an inviscid numerical �ux vector normal to the control volume boundary, and Q±

ij are
the values on both sides of the control volume boundary. The subscript of summation, j(i),
represents all nodal points connected to node i.
The numerical �ux, h, is computed using the approximate Riemann solver of Harten-

Lax-van Leer-Einfeldt-Wada [23]. Second order spatial accuracy is realized by a linear recon-
struction of the primitive gas dynamic variables with Venkatakrishnan’s limiter [24].
The LU-SGS implicit method [25] is applied to integrate Equation (2) in time. With

�Q=Qn+1 − Qn and a linearization of the numerical �ux term as hn+1ij = hnij + A
+
i �Qi +

A−
j �Qj, the �nal form of the LU-SGS method on an unstructured grid becomes:
Forward sweep:

�Q∗
i =D

−1
[
Ri − 0:5

∑
j∈L(i)

�Sij(�h∗
j − �A�Q∗

j )

]
(3a)
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Backward sweep:

�Qi=�Q∗
i − 0:5D−1 ∑

j∈U (i)
�Sij(�hj − �A�Qj) (3b)

where Ri= −∑j(i) �Sijh
n
ij , �h= h(Q+�Q)− h(Q) and D is a diagonal matrix derived by

the Jameson–Turkel approximation of Jacobian [26] as A±=0:5(A ± �AI), where �A is the
spectral radius of Jacobian A. D is given as follows:

D=

(
Vj
�t

+ 0:5
∑
j(i)
�Sij�A

)
I (4)

The lower=upper splitting of Equation (3), namely j∈L(i) and j∈U (i), for the unstructured
grid is realized by using a grid reordering technique [25] to improve the convergence and the
vectorization.

5. OVERSET IMPLEMENTATION

In addition to the boundaries of the computational domain, subgrids may have holes and
intergrid boundaries with the neighbouring donor-subgrids. The nodal points belonging to
the non-computational �eld must be blanked out from the �ow�eld solution. To classify
whether the nodal points should be computed or not in the �ow solver, all nodal points have
information as to whether they belong to the computational �eld or not. Namely,

IBLANK=

{
1; a point is not blanked out node:

0; a point is blanked out node:

This value is 1 or 0 depending on the area inside or outside the computational subregion.
In the �ow solver, the conservative variables and the gradient variables are multiplied by the
value IBLANK(i); namely, the variables in the outside region (hole region) are temporarily
set to zero. Each grid is �rst computed and then �ow variables are interpolated around in-
tergrid boundary. If the node whose IBLANK is 0 has a partner cell which belongs to the
computational �eld, the node is interpolated from the �ow variables from the partner cell.
That is, the node of IBLANK=0 is never computed. Although it has the variables given by
its partner grid. Due to this procedure, computational accuracy around the intergrid boundary
is highly improved.

6. TREATMENT OF MULTIPLE BODIES IN CONTACT

A similar procedure can be applied to multiple bodies in contact. The procedure is shown
in Figure 5 and can be explained as follows. In Figure 5, nodal point A (circular-shaped)
belongs to Body 1 (light grey zone), nodal points a, b and c and the other square-shaped and
diamond-shaped points belong to the Body 2 (dark grey zone). Solid lines show the mesh
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Figure 5. Treatment of multiple bodies in contact.

Figure 6. Inner mesh which is the mesh generated inside the body.

generated around Body 2 and dotted lines show the mesh of the wall boundary of Body 2:

1. First of all, every nodal points located inside computational �eld are computed. Then,
the nodal points located outside the partner body and whose IBLANK set to 0 (e.g.
nodal point b) are interpolated from their donor cells.

2. Nodal points which are located inside another body (e.g. diamond-shaped nodal points
are located inside Body 1), have their IBLANK set to 0.

3. Checking all edges, if one nodal point is located in the �ow�eld (e.g. square-shaped
nodal points) and the other is located inside a body (e.g. diamond-shaped nodal points),
the wall boundary condition is applied to the edge. The nodal point that is located inside
the body is given the density and pressure of the opposite nodal point, while the velocity
is de�ned to realize the slip condition between the two nodal points (namely, the normal

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:801–818
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vector of the wall boundary is used and the velocity of the edge realize the slip condition
bestriding the wall boundary). Due to applying this procedure to all edges, the nodal
point inside body has averaged values from the connected nodal points and the accuracy
around the intersection region is increased.

4. If the nodal points that are inside a grid body do not have a neighbouring nodal point
in the �ow�eld, the nodes are interpolated the �ow variables from the inner mesh which
is generated inside the body (Figure 6).

5. Due to the above treatment, nodal point c has some non-zero �ow variables and nodal
point A obtains adequate �ow variables from the interpolation of the partner-cell a-b-c.

The procedure mentioned above is important a separating simulation. Originally, the inner
mesh is generated for fast and accurate search for the partner cell and thus the search can
pass through the inside of the body. However, the inner mesh is a very important factor for
problems of separation. The nodal points which are inside the body (namely, the partner cell
belongs to the inner mesh) have proper variables so they can be computed even when they
enter the computational �eld during the separation.

7. COMPUTATIONAL RESULTS

7.1. Unstructured meshes

Figure 7 shows a tetrahedral unstructured grid generated around the jet-powered experimen-
tal airplane [27–29]. Flow-through nacelles are assumed as was employed by a wind tunnel
model. The airplane has a relatively complicated con�guration due to the nacelles. However,
owing to the unstructured mesh, the full con�guration can be described by only one un-
structured grid. The numbers of nodes and cells are 744 142 and 4 091 850, respectively. The
number of surface nodes is 224 768 that are appropriately distributed as shown in Figure 7
so as to resolve the sharp leading edges and corners.
For �ow simulations around a con�guration of the airplane with a small booster rocket

under the fuselage, an unstructured mesh that covers a cylindrical region around the booster
is overlapped with the airplane mesh as shown in Figure 8(A). The number of nodes of the

Figure 7. Unstructured mesh generated around the experimental airplane.
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Figure 8. Overset grids: (A) before the intergrid de�nition; and (B–D) after the intergrid de�nition.
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booster mesh is 63 139. Connecting parts between the airplane and the rocket booster are
embedded in the lower surface of the experimental airplane. Figure 8(B)–(D) show cut views
of the two grids after the overset implementation during the separation. Figure 8(b)–(d) show
enlarged views, respectively.

7.2. Flow simulation of airplane with booster

Flow computations around the airplane with a booster rocket under the fuselage are conducted
for several freestream Mach numbers and angles of attack. The boundary condition of the
rocket exhaust is de�ned as the wall boundary for the comparison with the wind tunnel data.

(A) (B)

(C) (D)

(A) (B)

(C) (D)

Figure 9. Computed pressure contours of the airplane and booster and enlarged views around the intake
with and without a small booster: (A) and (C) M∞=1:4, �=5:0; and (B) and (D) M∞=1:7, �=4:9.
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(A)

(a)

(C)

(c)

(B)

(b)

(D)

(d)

Figure 10. Computed pressure contours on the lower surface of the airplane: (A) and (C) M∞=1:4,
�=5:0; (B) and (D) M∞=1:7, �=4:9; and (a), (b), (c) and (d) computed pressure contours of the

lower surface of the airplane not describing the nacelle.

Figure 9 shows the computed pressure contours on the surface and the symmetrical plane for
freestream Mach numbers of 1.4 and 1.7 with angle of attack of about 5◦ of unsteady �ow
computation. Figure 10 shows the computed pressure contours on the lower surface of the
airplane where in Figure 10(a)–(d) the nacelle of the airplane is not depicted.
A shock generated from the nose of the booster a�ects on the lower surface of the airplane.

Shocks are also generated from the front of the connecting parts between the airplane and
booster, lower surface of the booster nozzle and the diverter of the airplane. Especially, the
shock waves from the tip and the side of the diverter of the airplane relatively strongly a�ects
on the lower surface of the airplane fuselage and complexly re�ected among the nacelle, the
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Figure 11. Comparisons of the lift and pitching moment coe�cients between the experimental and
computational results: (A) at M∞=1:4; and (B) at M∞=1:7.

lower surface of the airplane and the upper surface of the booster (Figures 9(A), (B), 10(A)
and (B)). The expansion waves are also observed from the corner of the connecting parts
and the tail of the booster. The expansion wave generated from the corner of the connecting
parts a�ects on the intake of the nacelle at a Mach number of 1.4 and in case of a Mach
number of 1.7, it a�ects on the sidewall of the nacelle. The expansion wave generated from
the tail of the booster a�ects on the lower surface of the tail of the airplane fuselage and
on the rear part of the nacelle at Mach 1.4 (Figure 10(A)). It also a�ects on the tail wing of
the airplane at Mach 1.7 (Figure 10(B)). The a�ect of the booster is relatively larger around
the tail of the airplane (Figures 9 and 10). At high Mach number like a Mach number of
1.7, the attachment of the booster a�ects on the tail wing of the airplane (Figure 10(B)). A
relatively higher-pressure zone around the centre of the connecting parts is also observed by
the attachment of the booster in Figure 10.
Figure 10 shows comparisons of the computed lift and pitching moment coe�cients with

the wind tunnel tests by NAL. To con�rm the validity of the overset mesh method, computed
results using an unstructured single grid is also plotted in the �gures. In Figure 11, ‘RB on’
and ‘RB o�’ denotes the computational results of the airplane with a small rocket booster case
and the airplane without a booster case, respectively. ‘SG’ denotes the computational results
of a single grid case and ‘OG’ denotes the computational results of overset unstructured grid
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case. The computational results show good agreement between the overset grid case and the
single grid case.
The e�ect of the booster on the overall lift coe�cients is relatively small. However, the

pitching moment coe�cients are a�ected by the attachment of the booster, especially for
higher Mach number with small angle of attack.

7.3. Flow simulation of booster separation

Flow�eld during the separation of the rocket booster from the airplane is simulated using
the overset unstructured grid method under the assumption of the unsteady �ow. At �rst, the
rocket booster is in contact with the airplane, and then the booster begins the separation. The
movement is subject to the gravity and the other force is not considered.

(A)

(B)

(C)

(a)

(b)

(c)

Figure 12. Computational results of separation: Pressure contours of the air-
plane-rocket booster at freestream M∞=1:8 and �=3:0◦ (airplane): (A) and (a)

D=0:0; (B) and (b) D=0:025; (C) and (c) D=0:05.
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Figure 13. Lift and pitching moment coe�cients of the airplane during the separation.

Figure 12 shows the pressure distributions during the separation. Figure 12(a)–(c) also
show the pressure distributions on the surface of the airplane and symmetric plane (The
structure of the grids and the boundaries of the overlapping grids are shown in Figure 8).
The nacelle is not depicted in these pictures in order to show the pressure distribution on the
fuselage.
A shock wave generated from the diverter is re�ected on the fuselage of the airplane at

�rst. Then the re�ected shock is re�ected again on the upper surface of the booster. Finally,
the complexly re�ected shock wave is impinged on the lower surface of the airplane (Figure
12(a)–(c)).
Figure 13 shows the lift and pitching moment coe�cients of the airplane during the sep-

aration. The value D denotes the distance between the airplane and booster. This value
is normalized by the total length of the airplane (12m). The lift coe�cients are slightly
decreased because the high-pressure zone in front of the connecting parts is disappeared due
to the separation of the booster. Then the lift coe�cients are increased gradually. The pitching
moment coe�cients show temporary decreases just at the beginning of the separation and then
show slight vibration.
Figure 14 shows the pressure distribution on the symmetric surface of the airplane. Figure

14(A) shows the pressure distribution before the separation. Due to the existence of the
connecting parts, the pressure coe�cient on the lower surface from x=L=0:43 to x=L=0:7 is
0. In Figure 14(B), at the beginning of the separation, the expansion wave generated from the
corner of the connecting part impinges the lower surface of the airplane around x=L=0:48.
This impinged point of the expansion wave moves downward along with the booster separation
in Figure 14(C) and (D). The shock wave generated from the diverter causes the peak value
around x=L=0:6 in Figure 14(B)–(D). Another expansion wave is generated from the tail of
the small booster. This expansion wave impinges on the lower surface of the airplane fuselage
around x=L=0:76 in Figure 14(B). The area of the lower surface where the expansion wave
impinges also moves downward during the separation and a�ects on the tail wing of the
airplane in Figure 14(C) and (D).
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Figure 14. Pressure distributions on the symmetric boundary of the airplane and pressure distributions
on the lower surface of the airplane: (A) D=0; (B) D=0:005; (C) D=0:025; and (D) D=0:05.

8. CONCLUSION

The overset unstructured grid method was applied to an NAL jet-powered experimental air-
plane with a small rocket booster. The computed results for a full con�guration at ascent �ight
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condition depicted the complex shock re�ection patterns occurred under the airplane under-
surface. The accuracy of the overset unstructured grid method was con�rmed by comparing
with experimental results and the result by unstructured grid case.
The method was then applied to simulate the booster separation from the NAL experimental

airplane. The computational results revealed the complex shock wave patterns between the
two bodies during the separation. These shock waves are generated not only from the nose of
the booster but also from the diverter of the airplane and the connecting part of the booster
and complexly a�ect on each other. The expansion waves generated from the booster also
a�ects on the lower surface of the airplane.
The overset unstructured grid method was shown its capability to treat �ow problems around

complex multiple bodies with relative motions. The method is also applied to successive
computations with changing the location of the booster without regenerating new meshes of
the airplane and the booster. Such computations are very useful to evaluate the best position
of the booster for launch con�guration and the separation.
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